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A method of reducing a three-dimensional problem in the asymmetric theory of elasticity to a two-dimensional problem in the 
theory of shells is proposed. © 1998 Elsevier Science Ltd. All fights reserved. 

The proposed approximate theory starts from the ideas of the improved theory of shells [1-3] and the 
general asymmetric theory of elasticity [4--6]. It can be used not only to analyse very shallow shells [3], 
but also to investigate shells with a large variability index, to construct a simple edge effect, to analyse 
local stability problems, etc. 

The theory may be of interest when considering shells made of polycrystalline materials, high polymers, 
grainy composites, etc. The results can be used when investigating microshells and plates encountered 
in micromolecular mechanics. 

1. Consider a shell of constant thickness h in an orthogonal curvilinear system of coordinates tx i. The 
middle surface of  the shell is the coordinate surface cqa2. The coordinate line tx 3 is rectilinear. The 
coordinate lines Oil and tz2 coincide with the lines of curvature of the middle surface. The principal 
curvatures of the middle surface and the coefficient of its first quadratic form are, respectively, ki = 
ki(Ctl, ~t2) and h i = A i ( t X l ,  a2), but are assumed to behave like constants during differentiation [1-3]. 
The system of coordinates is chosen so that the strong inequali tyAB/RiR2 ~ 1 holds (Ri are the principal 
radii of curvature of  the middle surface) [3]. The shell is assumed to be loaded only by surface forces 
applied at right angles with intensities Z ÷ (for ct 3 = h/2) and Z-  (for cx3 = -h/2). 

The theory is based on the following hypotheses [1-3]. 
1. The displacement u3, perpendicular to the middle surface of the shell and rotations about the normal 

lines ct 3 - o3 are independent of the coordinate ct 3 [1-3], that is 

u3 = w(ctt,tx2), to 3 =¥3(Otl,Ot2) (1.1) 

where w is the required normal displacement of the middle surface and ~3 is the required rotation about 
the coordinates ct 3. 

2. Over the thickness of the shell, the shear stresses ~31 and cr32 behave in accordance with the law 
described in [1, 2], that is 

03~ = f(a3)tp~ (0 q ,oc 2) n = 1,2 (1.2) 

where Cpn are the unknown functions a n d f  = (h2/4 - ct2)/2 is a given function for which the conditions 
a 3 = +_-h/2 are satisfied by the stresses cr3n. 

3. The structure of  the rotations col and o)2 is determined by the improved theory of very shallow 
shells [1, 2], that is 

t°t = w.2 - f ( a a ) V 2 ,  to2 =-w , i  +f(a3)W2 (1.3) 

where Wn(al, ct2) are the required functions. 
4. The normal stresses cr33 can be neglected compared with the stresses cr11 and cr22. The stress cr33 

can be determined from the equilibrium equation. 
Without loss of  generality, we will assume thatAi = 1 and the Lam6 coefficients are given by/-/1 = 

1 +klCt 3 ,H  2 =  1 + k 2 a  3 , H  3 =  1. 
For brevity, we will use the notation 
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_ aA a2Yk 
:fk - -~t ' fk.t  = i~¢t i ' fk,o = Ootii~tj and so on 

2. In the chosen system of coordinates, the force and couple-stresses ~ji and I~:i are given by [5-7] 

Oil =([J.'bO~)~[j i +(~t--OL)'~ij 4-~.¥kk~)ij ( M L - ; T  -2) (2.1) 

ptji = (y + E)~j i + (y - E)~# + I~a$i j  (MT -2) 

The strain tensor and bending-torsion tensor have the representations (with summation over k) 

1 uj u k 
Y ji = ~ Ui j Hj,i + - (Ok 

1 Ooj CO k 
= ~ (o i j Hj,i  + 8ji xJ' nj  • HjHi (2.2) 

g = E/[2(1 + v)], )~ = vE/[1 + v)(1 - 2v) are Lain6 constants, E is the modulus of elasticity, v is Poisson's 
ratio, a, ~/, E, 13 are new constants of elasticity (g, ~., E, ~x - ML-1T-~;  ~, ~, f3 - ML-Z) ,  ui are the components 
of the displacement of any point of the shell, 8ji is the Kronecker delta and e:ik is the Levi-Civita tensor. 

The equations of motion can be written as follows: 

(H2~l I ).! + (Hl~21).2 + (HIH2031),3 + H|,20t2 + H2HL3013 - H2,1022 + HI HzXI  = pHIH2ii~ 

(HIo22).2 + (HIH2032)..~ + (H2°12).1 + H2,1021 + 

+HIH2.3023 - HI.2OII + HIH2X2 = pnlH2/i2 (2.3) 

( HIH2¢133),3 + (n2013),1 -I- (H1023).2 - HIH2.3022 - H2HI,3011 + H I H 2 X  3 = rHiU2i~ 3 

Also 

(H2l.tl i ),! + (HiI.t21),2 + (H1H21.t31 ),3 + Hi,21a12 + H2HI,3[,t13 - H2.1P.22 + 

+ Hi H 2 YI + Hi H 2 (023 - 032 ) = JH~ H 2 ~  t 

(Hda22).~ + (H~H2~ts2).3 + (H~I~).~ + H~,~tx~t + H~ H~.sl~2s - Ht,~l~ ~ + 

+ H I H 2 Y  2 + H~H2(o~I _ Os2) = J H I H 2 6 2  (2.4) 

(HI H2~1"33 ).3 + (H2~1"13),1 + (HlI't23),2 - HI H2,3~22 - H2HI,3~I I + 

+ H~ H 2 Y3 + HI H2 (OI2 - 021 ) = JHI H2~3 

Here  Xi, Y,. are the components of mass forces and moments, respectively, r is the density (M L-3) 
and J is a dynamic characteristic of the medium (a measure of the inertia during rotation (ML-~) .  

These equations have been written ignoring the hypotheses and assumptions described above. They 
are quite general and do not appear to have been published in papers on the theory of shells. Obviously, 
they become much simpler in the case of very shallow shells. 

3. With the accuracy of the theory of very hollow shells [1-3] and the given hypotheses and assumptions, 
from (2.2) by (1.1) and (1.3) we have 

Ys3 = u3.3 = 0, us = w(cq,a2)  (3.1) 

Y3n = un.3 + w,n - f(ct3)Wn' YaS =-knun + f(0~3)¥n' n = 1,2 (3.2) 

Substituting the values of the stresses O'3n from (1.2) and the corresponding strains from (3.2) into 
(2.1), we solve the resulting equations for ui, taking ul = u(al ,  a2), u2 = v(,zl, ot2) with a3 = 0, and 
obtain 

un=u(v)-otaw.n+ I° (gn+2CtWn), n=l,2 (3.3) 
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7 ~__L(2 ~, h'-24 (1~3) (3.4) I o = _ I((13 )d(13 = 
0 

Thus, by virtue of the above hypotheses, the displacements of any point of the shell (3.1), (3.3) can 
be represented by means of seven unknown "two-dimensionar' functions u, v, w, ~01, (P2, ~/l, V2 (with 
arguments c~, a2). In addition, there is one unknown "two-dimensional" function V3(a~, a2), which 
represents rotations 0) 3 . 

The use of (1.1), (3.1) and (3.3) basically reduces a three-dimensional problem in the asymmetric 
theory of elasticity to a two-dimensional problem in the theory of shells. 

Substituting the values )'yi and 74i into (2.1) and using (1.1), (1.3), (3.1) and (3.3), as well as (1.2), we 
obtain the following equations for the stresses (any relations not written out are obtained by cyclical 
replacement of the symbols in brackets) 

~11 = B{U.I +klW+V(v,2 +k2w)-(13(w.II + vw.22)  + 

l°S" } 
+ It + a L~L~ + vtP2.2 + 2a(~t.~ + v¥2,2 )] (3.5) 

(1 , - -~2 ,u~-~v) ,  B=EI(1-v2), B ~ 2 = v E / ( l - v  ~) 

if)2 = (it + (1)v: + (it - or)u2 - (13 2itw.~2 - 2txalt 3 + I 0 x 

u ~ v, V3 ~ - ~ 3 )  (3.6) 

We also have 

~.3 = -k, ,  (It + (1)u + k n (it + (1)tl.~w ,t + 2f((1.3)(1¥n + 

l~l~ = 2~v,12 - f((13)[(2¥ + 13)~2,1 - ~WL2 ] + [2~1 + ~kt  + k2 )]¥3 

(3.7) 

(3.8) 

(1~-~2, w~--~-w,  f ~--~- f )  

It12 = -(Y + e)w,  I I + (Y - ~)w.22 + f((13)[(Y + e)~j.l --  ( T  -- e ) ¥ 2 . 2  ] (3.9) 

(1t - .2 ,  w ~--~-w, f ~ - ~ - f )  

~tl3 = (Y + e)(¥3.~ - kl w,2) + [ktf((13)(Y + e) + (13 (Y - e)]~2 (3.10) 

1"1"23 = (V + 8)((03.2 + k2w, I ) - [k2f((13 )(~' + 8) + ct 3 (~/- 8)]¥ l 

The coup!e-stresses ~t33, 1~3/which, in thin shells, are quite small compared with gii, laik, can, if necessary, 
be determined from the equations of motion (2.4) allowing for the surface conditions ~33 ---- ~31 ----" 

[l.t32 = 0 at ~3 = +_h/2. 
The stresses (3.5)-(3.10) in the cross-sections of the shell produce internal forces and moments which, 

per unit length of the middle surface and to the usual accuracy of the theory of very hollow shells [1-3], 
can be written as follows: 

tangential and shearing forces due to force stresses 

Tt, = Bh[u., + k , w +  v(v.2 +k2w)]  (1t- ,2,  u .-->v ) 

Si2 = h[(it  +(1)v. t  +(it-(1)u.i-2Oalt3] (1 ~--~2, u ~-~v, lit 3 t - -~-W3) (3.11) 

h 3 (" It - ~ 4it(1 / 

bending moments and torques due to force stresses 
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Bh 3 Bh 5 
M~ = -  12 (w't~ +vw.22)+ 120([t+ot)[qh.t +V~02.2 +21X(~I/I. I +V~/2,2)]  (1 ~--> 2) 

Ht2 = - 2 g ~ "  w.~ +1-~  9~,) ~2.~ ¥1.2 (1 (--) 2) (3.12) 

total torques and bending moments due to couple-stresses 

h 3 
PII = 2yhw.|2 -'~-[(2Y+~)W2,1-~WI.2] (! (--)2, w ( - + - w ,  h o - h )  

h 3 
R~2 = h[(Y- e)w.22 -(Y+e)w,~]+~-[(Y+e)¥L~ -(Y-e)W2.2] (1 o 2, h~--) -h) (3.13) 

] Q~.~ =k~(y+e) -~-~2 -hw.2 +(y+e)h¥~.~ (1 ~ 2 ,  h ~ - h ,  ~.~ ~ - ¥ 3 )  

4. Averaging the equations of motion (2.3), (2.4) over the shell thickness, using (1.1)--(1.3), (3.4)-(3.13) 
and the conditions on the surfaces a3 = *__h/2, with the usual accuracy of shallow shell theory [1-3] we 
obtain the following equations of motion in forces and moments 

Tl~.l + S~L2 +kiNL~ =phii (1(--+2, u ~--->u ) 

NI3.1 + N23.2 - klTit - k2T22 = - ( Z  + + Z - ) + p h f b  (4.1) 

h 3 h 5 h 3 .. 
Mr,.= + H;~.2 - ~ - % -  k2 l-~2aV= =.-p.-~w.= + 120(-~Ph5 o0 (%'" + 2 c ~ )  (l ~-+ 2) 

and also 
h 3 h 3 

PII,I + R21.2 +klQI3 + N 2 3 - " ~ 2  = Jhff~,2 - J~2 ~2 (1 ( -+2,  h'~-">-h, N23 ~->-N;3) 

Qi3,1 + Q23.2 - klPl! - k2P22 +SI2 -$21 = Jhw3 (4.2) 

Substituting the values of the internal forces and moments into (4.1) and (4.2), we obtain a complete 
system of eight differential equations in the eight unknown functions u, t), w, <Pl, tp2, ~gl, ~g2, W3 

BU.I I d" (~t't-Or)u,22 +(BI2  q-~l,-001/12 + B ( k  I + vk2)w.l + 

h2 ( .  _ a 4~a 
+k, ,,~ ~.w,-,~ 7~'~/..-VT"Z_ qh + la+a yj) +2oag3, 2 =p/i (1 (-+2, u~-->u, W3 ~ -xg3) (4.3) 

[kl(B + I.t + or)+ k2B12]u.t + [kl(B + St + ct)+ kiBt2]o,2 + 

h2 r~t-a. 

4~ta . ] Z Z+ 
+l . t+atv .~+~g2,2) j=~--pa , ,  Z =  +Z-  (4.4) 

h21" m / ~  +p . -a  
nw.11~ + nw.122-~L----~a~01.,i +~01.~2 + p + a  ~02.12 + 

+2a ~.~l + ~.22 4 BI2 + g - a  +k] 2 a ~  la+ct ¥2.~2 +% = 

Ph2a)(/pl +21xili I) (i~-~2) 
=P~ :  10(~t + 

(4.5) 
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h 2 
(~ + E)(W.I I I + W.122 ) -- "~" [(~ + e)¥1,11 + (2~ + ~)(DI.22 - ('y - e -I- 1~)¥2.12 ] - 

h 2 2 a  
-[k2(3Y+e)+(kl  +k2)~]¥3'2 12 ~ + a  (% - 2 a ~ l ) - k l ( p ' + a ) u +  

h 2 h 3 
+k2 "~'(Y+e)~l  = J//'.l - J ] ~ l  (1 ~ 2,u ~ v ,~  3 ~-> -~3)  (4.6) 

2a(u . l  - u.2 ) - (kl - k2 )(3¥ + e)w.i 2 + ('~ + e)(~/3.11 + ¥3.22 ) + 

h2 2 
+ T 2  [kl (3~¢ + [~ + £) + k2[~]V2, I - ~ [k 2 (3')' + ~ + £) + kl~]Wi. 2 - 

-[(2y + ~)(k 2 + k 2) + 2~ktk 2 + 4a}V3 = JilJ3 (4.7) 

To these must be added the boundary conditions at the ends of the shell. The averaged boundary 
conditions can be written like the boundary conditions of the improved theory [1, 2]. 

5. For a plate (kl = 0, k 2 = 0), the system of resolvents splits into two independent systems. The first 
consists of the three equations (4.3) and (4.7) in the three unknowns u, v, ~/3 (the plane problem). The 
second consists of the five equations (4.4), (4.5) and (4.6) in the five unknowns w, tpl, q)2, V1, WE (transverse 
bending). In the special case when a = 0, the first five equations are the same as in the improved theory 
[1, 2], while the other three can only be associated with the former in terms of the unknown displacements 
u, D and w .  

6. We will consider the model problem of a circular cylindrical shell with radius of curvature R 2 = R which is 
spherically supported at its ends (a  1 = 0, ct2 = a) and is axisymmetrically loaded (Z = q sin ~.¢q, ~ = =/ct). In this 
case, obviously, all the unknown quantities will be functions of v = 0, q)2 -- 0, ~t/2 --- 0, ~1/3 = 0 only. Also v = 0, 
tp2---- 0,~2---- 0 ,~3 ---- 0. 

The system of  resolvents in the required functions u(al),  w(cq), % = ¢p(al), ~1 = V(cq) takes the form (the 
prime denotes a derivative with respect to a l )  

+ BI2 R w'  = Bu" O 

R L 12 ~,},t +~ H + a  ) n 

(6.1) 
h 2 B 

Bw" - - . ( t p "  + 2 a ~ " )  + (p-- 0 
I0 ~ + a  

h2[" # 4}~a 2a  _ y + ~  "] 

12 L ~t + (x ~+a /¢- 
3 

Table 1 

b 2 ~ B B h 2 Bh 2 

0.0 430 41.1 1.65 
4 0.05 398 38.0 1.5 ! 87.0 

0. I 396 37.9 1.50 49.2 
0.5 395 37.7 1.50 15.6 
0.05 398 38.0 1.51 145 

2 O. I 396 37.9 1.50 84.4 
0.5 395 37.7 1.50 26.4 
0.05 349 33.3 1.29 218 

I 0. l 335 32. I 1.23 134 
0.5 322 30.7 I. 17 43.0 
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For internal forces and moments we have 

h 3 i . i . -c t  . 41,1.(t , ) 

M I = -  Bh3 w"+ Bh5 (9 '+2~t~) ,  R21 = Y-~+~RI2 
12 120(la+Ct) 

( h  , h 3 "~ 

(6.2) 

Assuming 

u=uocos~xt  I, w=w0sinkc  q,  9=9ocoS2~t l ,  ¥ = ¥ o e o s 2 ~ q  

the conditions of free support at the ends of the shell are satisfied, and from Eqs (6.1) we obtain a system of algebraic 
equations from which the required coefficients u0, w0, tP0, ~0 can be found. 

The analytic representations of these quantities are long and cumbersome, so we will only give the results for 
some specific numerical cases. Let a = R, h/a = h/R = 1/20, v = 0.3, IX = 0.3b. Further, we assume [8-10] that 
), + e = 41a/2, where I is a new constant of the material with the dimension of length. It is obvious in this case that 

= 21d2(1 + rl), e = 21a/2(1 - 11). The dimensionless constant rl, as we know [10], varies between -1  and 1 and is 
assumed [8, 10] to be not very different from the value of -v.  In these examples the new constant of elasticity a 
takes the values: zero, 0.05~t, 0.11a and 0.51a, and the dimensionless quantity b = h/l, which is the ratio of the shell 
thickness to a parameter of the material, takes the values: 1, 1.14142 and 2. The results are given in the table. 

The required values can be found with the improved theory [1, 2] when b 2 = 4, ot/I,t = 0 .0 ,  but normally 
one is limited to quite thin shells h/a = 1/20, for which the influence of transverse shears on the values 
is reduced considerably, thus making the effects due to asymmetric elasticity more obvious. 

The table shows that even quite small values of the new constants of elasticity can result in appreciably 
different values from those obtained in the classical theory. Moreover, for a fixed value of l, a change 
in a produces a change of only one-tenth of that amount in the values of u0, w0, g0, which is important 
in the design of experiments to determine the new (basic) constant of elasticity l. By reducing the shell 
thickness, we increase the influence on the results of the new constant of elasticity I. In particular, for 
fixed l, when the absolute thickness of the shell is reduced, there is considerable disagreement between 
the results of the classical (improved) theory and the theory proposed here. Assuming, for example, 
that b = 1, with a shell thickness h = 0.05, which is equivalent to taking I = 0.05, we conclude that the 
required values of u0, w0, cp0 will differ from the classical values by 20-25%. 

R E F E R E N C E S  

1. AMBARTSUMYAN, S. A., The Theory of Anisotropic Shells. Fizmatgiz, Moscow, 1961. 
2. AMBARTSUMYAN, S. A., The General Theory of Anisotropic Shells. Nauka, Moscow, 1974. 
3. GOL'DENVEIZER, A. L., The Theory of Thin Elastic Shells. Nauka, Moscow, 1976. 
4. COSSERAT, E. and COSSERAT, E, ThOle des Corps D~formables. Hermann, Paris, 1909. 
5. PAEMOV, V. A., The fundamental equations of the theory of asymmetric elasticity. PriM. Mat. Mekh., 1964, 28, 401--408. 
6. NOWACKI, W., The Theory of Elasticity. Mir, Moscow, 1975. 
7. LUR'YE, A. I., The Theory of Elasticity. Nauka, Moscow, 1970. 
8. MINDLIN, R. D., and TIERSTEN, H. E, Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and 

Analysis, 1962, 11, 5, 415--448. 
9. SAVIN, G. N., Fundamentals of the Plane Problem of the Moment Theory of Elasticity. Izd. Kiev. Univ., Kiev, 1965. 

10. KOITER, W. T., Couple-stresses in the theory of elasticity. Proc. Koninkl. Nederl. Akad. Wetensch., 1964, 67, 1, 17--44. 

Translated by R.L. 


